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INTRODUCTION IMAGES TO MODELS BIOMECHANICAL MODELLING

Hypertrophic cardiomyopathy (HCM), a
genetic disease characterised by an
abnormal thickening of the ventricular
myocardium, affects up to 1 in 200 people. If
thickening occurs on the septal wall, left
ventricular outflow tract obstruction (LVOTO)
can occur which can be life threatening. A
typical therapy for severe LVOTO involves
either myectomy or alcohol septal ablation.
However, better tools and further
understanding are needed to classify the
severity of HCM and develop an appropriate
therapy plan.
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Fig 1. a) Example of HCM versus healthy heart, b) HCM classifications

With maghnetic resonance imaging
capabilities, computational models provide
a unique tool with which to study the
mechanics of HCM hearts, potentially
uncovering new markers with which clinicians
can use to stratify patients into risk groups
and plan therapy.

IMAGES TO MODELS

Image Segmentation:

A Residual U-Net (5 levels, 5000
iterations) was trained on 1264 long axis
and 9095 short axis images manually
labeled with the left ventricular (LV) blood
pool, LV myocardium and right
ventricular (RV) blood pooll. Data came
from healthy volunteers, patients with HCM as
well as patients with dilated cardiomyopathy.
Images were acquired on both Siemens and
Philips Scanners.

The data was augmented by adding:

« Contrast normalization

« Random flip/transpose

 Dropout in k-space (introducing artificial
noise)

 Free-form deformation (introducing shape
variation)

« Random translation/rotation/zoom

Fig 2. Example labels from the trained neural network on an HCM case

Model Fitting:

@ Register LA/SA masks and align SA masks
(registration error used as weights in Step 4)

@Masks (Fig 2) > 2D Contours

@ 2D Contours = 3D Data Points

@ Fit template surface mesh to 3D data

points?

a. Stiff fit: Linear least squares fit
b. Soft fit: Quadratic fit with
explicit diffeomorphic constraints

Simulations of the full cardiac cycle were
performed, extending the methods in Asner et
al.? to the biventricular case. Novel boundary
conditions are introduced to model the
influence of valve plane motion through the
use of data-derived boundary energies, rather
than Dirichlet conditions. In future work,
Dassive and active parameters will be
personalized by finding the best match
netween the geometric data from MR images
and model results. A purely mechanical rather
than electro-mechanical model is used.
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Fig 3. Illustration of pipeline from masks to models

Heart model based on energy potential
minimization3:4
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Reduced Holzapfel-Ogden passive constitutive
law:

a a 2
T2 2b,
with patient-specific isotropic and fiber stiffness

Length-dependent active law: (a, ay)

Wao = a(t)o(Cy)(Ie, — 1)

with patient-specific active tension scaling

External Energy

Matching Oth order moments3 over all valve
planes:
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Fig 4. Mitral and aortic valve planes overlain on the 3-chamber long axis image

Simulation driven by LV/RV volumes3:
H?Et (u, A%”» ApY) = )‘%U(Vlv (w) = Viv,a) + A" (Vio(u)

where Vi.(:)  and Vi.() measure model
volume over CINE SA planes.

— Vrv,d)

10 Criteria for Credible Models

Define context clearly

A pipeline for rapidly generating patient-specific biomechanical models, which captures the shape
heterogeneity in an HCM cohort, has been implemented

Use appropriate data

Short and long axis MR images were acquired from a clinical protocol

Evaluate within context

Neural network segmentations have been evaluated and compared against manual segmentations for 14 HCM
cases to ensure adequate dice scores (Fig 5). Additionally, the geometric models and fitting process have been
evaluated to ensure an accurate fit to contour data (Fig 6 and 7).

List limitations explicitly

The methods are limited by the image quality. A few cases have been obtained with poor image quality (low
SNR), resulting in poor labelling by the neural network. In these cases, models cannot be fit accurately.

Use version control

The neural network for image labelling is on Github. Code for segmentation cleaning, contour extraction and
model fitting is kept on a local development machine with backups.

Document adequately

Steps of the pipeline are documented in detail for ease of use.

Disseminate broadly

Portions of this work have been published already: https://link.springer.com/chapter/10.1007/978-3-030-
12029-0 40 and https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8512394

Get independent reviews

Feedback has been obtained throughout the development process from both clinicians and scientists to
develop accurate and useful patient-specific models.

Test competing

implementations .
different scanners and sequences).

Numerous iterations of the neural network (with differing data augmentation steps and training datasets) have
been tested to create a neural network which is robust in accurately labelling images from diverse sources (e.g.

Conform to standards

expert clinician.

The segmentations from the neural network are validated against those either performed or checked by an

RESULTS & CONCLUSIONS

Neural Network Dice Scores:

21X NY]
DSC =
X|+ Y]
LV Blood LV Myo
100 | B 100!
Mean: 0.867 Mean: 0.834 B
50 — 50 -
0 0.5 1 0 0.5 1
RV Blood
100 |
Mean: 0.842 -
50 ¢
0 0.5 1

Fig 5. Dice scores calculated between neural network segmentations and manually
drawn segmentations

Model Fitting Errors:
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Fig 6. RMSE fitting errors (outliers not shown) between surface meshes and
contour points. Due to the fact that registration errors were used as fitting
weights, some outlying errors are high (> 10 mm) since they were given small
weights in the fit.
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Fig 7. Example case depicting the fitted surface mesh (black) at a) end-diastole
and b) end-systole for one case as well as contour points with color depicting
error (distance from surface)

Biomechanical simulations are being carried

out using the models fitted using this
automated pipeline. The steps, including
automated segmentation and model

fitting, enable for rapid generation of
high-quality patient-specific biventricular
models.
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